Towards a Provably Secure DoS-Resilient Key Exchange Protocol with PFS

L. Kuppusamy*† J. Rangasamy*† D. Stebila* C. Boyd*
J.M. González Nieto*

*Information Security Institute
Queensland University of Technology, Brisbane, Australia

†Society for Electronic Transactions and Security
Chennai, India

IndoCrypt 2011

†This work was supported by the Australia-India Strategic Research Fund project TA020002.
Introduction

Denial-of-service in Key Establishment

Just Fast Keying

Contributions

BPV-JFK

DoS-BPV-JFK

Conclusion
Key Establishment Protocols

Goals
Use cryptographic techniques to
- Authenticate each other
- Share a secret key

Limitations
Involve computationally expensive operations such as modular exponentiation
- This make the server to set a limit on the number of connections at a time
- Vulnerable to a denial-of-service attack
Denial-of-service (DoS) is one of the most common real world network security attacks. DoS prevents users from accessing their legitimate resources. It is an attack on availability. Highly publicised attacks have affected nation states: Estonia (April 2007); Georgia (August 2008); United States and South Korea (July 2009). DoS attacks against sites of your choice are readily available for hire. Google (June 2009): News searches sparked by Michael Jackson’s death were initially mistaken for an automated denial of service attack.
Types of DoS attacks

- Brute force attacks: attacker generates sufficiently many legitimate-looking requests to overload a server’s resources. Does not require special knowledge of protocol specification or implementation.

- Semantic attacks: attacker tries to exploit vulnerabilities of particular network protocols or applications. Requires special knowledge of protocol specification and implementation.
Two party DoS-resilient key exchange protocols

- Just Fast Keying (JFK)
- Client Aided-RSA (CA-RSA)
- Modified Internet Key Exchange (MIKE)
- Host Identity Protocol (HIP)
Just Fast Keying (JFK)

- a simple, efficient and secure key exchange protocol
- well known for its DoS resistant techniques such as re-use of Diffie-Hellman (DH) ephemeral keys
- achieves only adaptive forward secrecy due to the re-use technique
- claimed secure in the CK01 model under the Decisional Diffie-Hellman assumption
JFK protocol

Client

Nonce N_c → $H(N_c), g^x$

$g^y, N_s, H(N_c)$, \leftarrow

K_e, K_a, S_1 → N_c, E_c, A_c

$\leftarrow S_2, E_s, A_s$, $\text{verify } A_c, \text{Decrypt } E_c$

$\text{Verify } S_1, \text{generate } S_2$

Server

$K_e = H_{g^{xy}}(N_s, H(N_c), 1), K_a = H_{g^{xy}}(N_s, H(N_c), 2)$

$SIG : S_1 = \{ s_{kc}(H(N_c), N_s, g^x, g^y), ID_C \}$

$Encryption : E_c = \{ S_1 \} K_e, MAC : A_c = \{ E_c \} K_a$

$S_2 = s_{ks}(H(N_c), N_s, g^x, g^y, ID_C), E_s = \{ S_2 \} K_e, A_c = \{ E_s \} K_a$
Cost-based Analysis of JFK

Smith et al analysed JFK using Meadows Cost-based framework and found two computational based DoS attacks.

An Overview of Meadows cost-based framework
- proposed to analyse DoS Vulnerabilities in network protocols
- Assigns cost to every action of the Client and server
- Calculate the total cost for each party in a specific run of the protocol
- If the total cost of the server (to send a response) is greater than the total cost (to send a message), then the protocol is vulnerable to a DoS attack
Smith et al’s attacks on JFK

\[
\begin{align*}
\text{Client} & \quad \text{Server} \\
\text{Nonce } N_c & \quad H(N_c), g^x \\
& \quad g^y, N_s, H(N_c), \\
K_e, K_a, S_1 & \quad N_c, E_c, A_c \quad \text{verify } A_c, \text{ Decrypt } E_c \\
& \quad S_2, E_s, A_s, \quad \text{Verify } S_1, \text{ generate } S_2
\end{align*}
\]

\[K_e = H_{g^{xy}}(N_s, H(N_c), 1), \quad K_a = H_{g^{xy}}(N_s, H(N_c), 2)\]

Attack 1
- by a direct application of Meadows framework
- goal is to force the server to perform MAC \(A_c\) verification
- due to the expensive \(K_a\) operation
- fix: to incorporate client puzzles
Smith et al’s attack contd.

Attack 2
- Possible due to the presence of co-ordinated initiators.
- Possible when both clients and server re-use g^x and g^y.
- Goal is to force the server to perform $\text{sig } S_1$ verification.
- Idea: g^{xy} can be amortised across all sessions.
- Fix: Binding the ephemeral keys to a specific session. For example, set the shared DH exponential as g^{xyr}, where r is a function of session specific parameters.
Contributions

- A new DoS vulnerability in JFK
- Security flaw: Basic JFK with re-use technique may require GDH assumption not the DDH assumption
- Modified JFK protocol using BPV technique
 - secure under the DDH assumption
 - achieves perfect forward secrecy
- Analysed in Stebila et al model for Dos resilience
New DoS vulnerability

Possible due to the presence of co-ordinated initiators

Possible when only the server re-use the DH ephemeral keys

Idea: the malicious client computes ephemeral DH key g^x for one session and then computes other ephemeral DH keys as g^{nx}, where $n = 2, 3, \ldots$. Similar idea is applicable to the computation of the shared DH exponentials (g^{nxy}).
BPV Generator (Boyko, Peinado, Venkatesan Eurocrypt’98)

- Method for computing DH exponential in few multiplications.

BPV Generator

Let \(p \) be a DSA modulus such that the prime \(q \) divides \(p - 1 \). Select a random element \(g \) of order \(q \) in the multiplicative group \(\mathbb{Z}_p^* \). Let \(N \) and \(\ell \) be integer parameters such that \(N \geq \ell \geq 1 \).

- **Pre-processing** run once. Generate \(N \) random integers \(x_1, x_2, \ldots, x_N \in \mathbb{Z}_q \). Compute \(X_i = g^{x_i} \mod p \) for each \(i \) and store the pair \((x_i, X_i)\) in a table.

- **Whenever a pair \((y, g^y)\) is needed**: Generate a random set \(S \subseteq_R \{1, \ldots, N\} \) such that \(|S| = \ell \). Compute \(y = \sum_{j \in S} x_j \mod q \). If \(y = 0 \), stop and generate \(S \) again. Otherwise, compute \(g^y = \prod_{j \in S} g^{x_j} \mod p \) and return \((y, g^y)\).
Let q be a prime, and let $N \geq \ell \geq 1$. Then,

$$\frac{1}{q^N} \sum_{\vec{x} \in \mathbb{Z}_q^N} \sum_{y \in \mathbb{Z}_q} \Pr_{S \subseteq [1, N]: |S| = \ell} \left(\sum_{j \in S} x_j \equiv y \pmod{q} \right) - \frac{1}{q} \leq \sqrt{\frac{q}{N \ell}}.$$

- for appropriate choices of the N and ℓ values, the BPV generator outputs almost all the elements of \mathbb{Z}_q and the proportion of elements not output by the BPV generator is very small.
- the result holds regardless of whether the pre-computed x_i's are known to a distinguisher or not.
choose a bigger value of N (polynomial in $\log q$) to make ℓ smaller.

| N | ℓ | $\sqrt{\frac{q}{\binom{N}{\ell}}}$ | Runtime \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^{11} = 2048$</td>
<td>48</td>
<td>2^{-82}</td>
<td>0.939</td>
</tr>
<tr>
<td>$2^{12} = 4096$</td>
<td>40</td>
<td>2^{-80}</td>
<td>1.892</td>
</tr>
<tr>
<td>$2^{13} = 8192$</td>
<td>35</td>
<td>2^{-81}</td>
<td>3.758</td>
</tr>
<tr>
<td>$2^{14} = 16384$</td>
<td>31</td>
<td>2^{-81}</td>
<td>7.527</td>
</tr>
<tr>
<td>$2^{16} = 65536$</td>
<td>26</td>
<td>2^{-83}</td>
<td>30.148</td>
</tr>
</tbody>
</table>

a single 160-bit modular exponentiation takes 0.461 ms.

The advantage factor of BPV generation over modular exponentiation based on the parameter values listed in Table is between 2 and 3.4.
BPV-JFK

Client
- Nonce N_c
- N_c, K_e, K_a, S_1

Server
- $g^y \leftarrow \text{BPVPairGen}$
- verify A_c, Decrypt E_c
- Verify S_1, generate S_2

$K_e = H_{g^{xy}}(N_s, H(N_c), 1)$, $K_a = H_{g^{xy}}(N_s, H(N_c), 2)$

$\text{SIG} : S_1 = \{ s_{k_e}(H(N_c), N_s, g^x, g^y), ID_C \}$

$\text{Encryption} : E_c = \{ S_1 \} K_e$, $\text{MAC} : A_c = \{ E_c \} K_a$

$S_2 = s_{k_s}(H(N_c), N_s, g^x, g^y, ID_C)$, $E_s = \{ S_2 \} K_e$, $A_c = \{ E_s \} K_a$

- BPV-JFK achieves Perfect Forward Secrecy (PFS)
- BPV-JFK is not fully DoS resilient. DoS-attack is possible if the server send **bogus MAC** A_c in the third message
Stebila et al gave a generic technique to transform any protocol into a DoS resistant protocol.

The technique uses strongly difficult interactive client puzzles as a DoS countermeasure and message authentication codes (MAC) for integrity of stateless connections.

The server in the protocol must not perform any expensive operation until it verifies the MAC and the puzzle solution.
DoS-BPV-JFK

Client

Nonce N_c → $H(N_c), g^x$

MAC, CPuz, g^y, N_s, $H(N_c)$, g^y ← BPV pair gen

K_e, K_a, S_1 → MAC, PuzSoln, N_c, E_c, A_c → verify MAC, CPuz, A_c, Decrypt E_c

S_2, E_s, A_s, Verify S_1, generate S_2

Server

$K_e = H_{g^{xy}}(N_s, H(N_c), 1)$, $K_a = H_{g^{xy}}(N_s, H(N_c), 2)$

$SIG : S_1 = \{s_{k_c}(H(N_c), N_s, g^x, g^y), ID_C\}$

Encryption : $E_c = \{S_1\}_{K_e}$, MAC : $A_c = \{E_c\}_{K_a}$

$S_2 = s_{k_s}(H(N_c), N_s, g^x, g^y, ID_C)$, $E_s = \{S_2\}_{K_e}$, $A_c = \{E_s\}_{K_a}$

Kuppusamy, Rangasamy, Stebila, Boyd and González Nieto

DoS-resilient key Exchange protocol with PFS
Table: Comparison of properties of JFK-based protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Cost-based vulnerability</th>
<th>Security assumptions</th>
<th>Perfect Forward Secrecy</th>
<th>DoS-resilience</th>
</tr>
</thead>
<tbody>
<tr>
<td>JFK</td>
<td>Yes</td>
<td>GDH, ROM</td>
<td>Only with no reuse</td>
<td>No</td>
</tr>
<tr>
<td>DoS-JFK</td>
<td>No</td>
<td>GDH, ROM</td>
<td>Only with no reuse</td>
<td>Yes</td>
</tr>
<tr>
<td>BPV-JFK</td>
<td>No</td>
<td>DDH</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DoS-BPV-JFK</td>
<td>No</td>
<td>DDH</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
DoS may arise in a number of ways. Our focus is on resource exhaustion DoS attacks (on network protocols). We propose to use a technique introduced by Boyko et al. to achieve PFS and to resist the identified attack on JFK. BPV-JFK is secure in CK01 model under the DDH assumption. BPV-JFK is DoS resilient after incorporating client puzzles and secure MACs.
Thank You all