Formal Analysis of the Entropy / Security Trade-off in First-Order Masking Countermeasures against Side-Channel Attacks

Maxime Nassar, Sylvain Guilley and Jean-Luc Danger

Bull TrustWay, Rue Jean Jaurès, B.P. 68, 78 340 Les Clayes-sous-Bois, France.

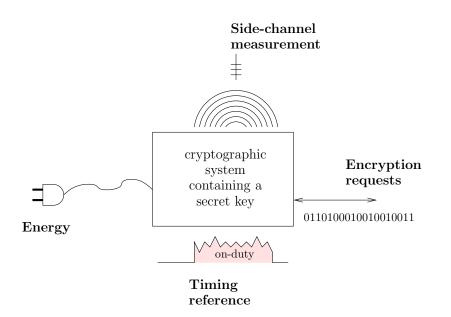
Institut TELECOM / TELECOM ParisTech, 46 rue Barrault, 75 634 Paris Cedex, France.

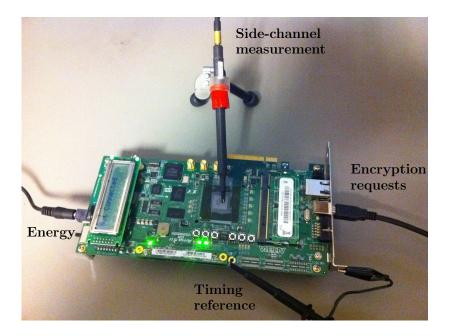
Secure-IC S.A.S., 80 avenue des Buttes de Coësmes, 35700 Rennes, France.

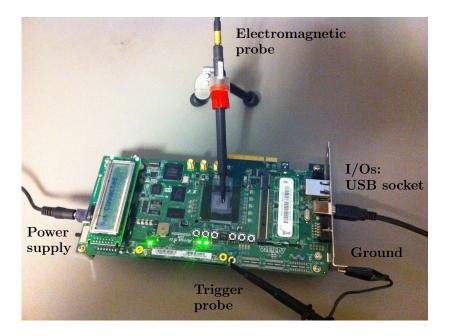
- Side-Channel Analysis (SCA)
- Countermeasures
- Goal of the Presentation
- 2 RSM: Rotating Sboxes Masking
 - Rationale of the Countermeasure
 - RSM Modelization
- Information Theoretic Evaluation of RSM
- Security Evaluation of RSM against CPA and 2O-CPA
 - Optimal HO-CPA
 - Expression of $\rho_{\rm opt}^{(1,2)}$
- 5 Conclusions and Perspectives

RSM: Rotating Sboxes Masking Information Theoretic Evaluation of RSM Security Evaluation of RSM against CPA and 2O-CPA Conclusions and Perspectives Side-Channel Analysis (SCA) Countermeasures Goal of the Presentation

- Introduction
 - Side-Channel Analysis (SCA)
 - Countermeasures
 - Goal of the Presentation
- RSM: Rotating Sboxes Masking
 Rationale of the Countermeasure
 RSM Modelization
- Information Theoretic Evaluation of RSM
- 4 Security Evaluation of RSM against CPA and 2O-CPA
 Optimal HO-CPA
 Expression of ρ^(1,2)_{opt}
- 5 Conclusions and Perspectives







RSM: Rotating Sboxes Masking Information Theoretic Evaluation of RSM Security Evaluation of RSM against CPA and 2O-CPA Conclusions and Perspectives Side-Channel Analysis (SCA) Countermeasures Goal of the Presentation

Protection against side-channel attacks

Extrinsic countermeasures

- Noise addition ... makes the attack difficult but not impossible
- Internal poweringcan be tampered with

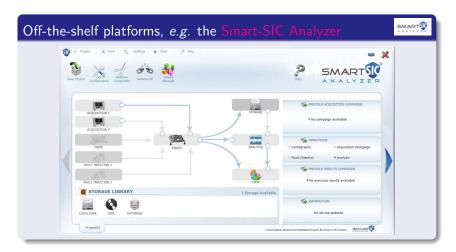
Internal countermeasures

- Make the power constant ... require design skills [DGBN09] #
- $\bullet\,$ Masking the power $\ldots\ldots\ldots$ susceptible to HO-SCA $\checkmark\,$

RSM: Rotating Sboxes Masking Information Theoretic Evaluation of RSM Security Evaluation of RSM against CPA and 20-CPA Conclusions and Perspectives

Side-Channel Analysis (SCA) Countermeasures Goal of the Presentation

Security Evaluation of Countermeasures



- ▲日 > ▲国 > ▲国 > ▲国 > ▲目 > ◇ ◇ ◇

RSM: Rotating Sboxes Masking Information Theoretic Evaluation of RSM Security Evaluation of RSM against CPA and 2O-CPA Conclusions and Perspectives Side-Channel Analysis (SCA) Countermeasures Goal of the Presentation

Context

- + Security $\odot \implies$ + Costs \odot
- Trade-offs?
 - Maximal security within a given budget
 - Minimal spendings for a target security level (CC EALx?)
- Formal analysis: sound and realistic metrics for both security and cost.

RSM: Rotating Sboxes Masking Information Theoretic Evaluation of RSM Security Evaluation of RSM against CPA and 20-CPA Conclusions and Perspectives Side-Channel Analysis (SCA) Countermeasures Goal of the Presentation

Context

- - Costs $\odot \implies$ Security \odot
- Trade-offs?
 - Maximal security within a given budget
 - Minimal spendings for a target security level (CC EALx?)
- Formal analysis: sound and realistic metrics for both security and cost.

Rationale of the Countermeasure RSM Modelization

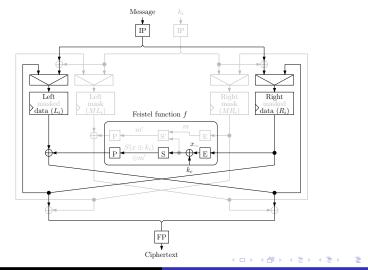
Introduction

- Side-Channel Analysis (SCA)
- Countermeasures
- Goal of the Presentation
- RSM: Rotating Sboxes Masking
 Rationale of the Countermeasure
 RSM Modelization
- Information Theoretic Evaluation of RSM
- Security Evaluation of RSM against CPA and 20-CPA
 Optimal HO-CPA
 - Expression of $\rho_{opt}^{(1,2)}$
- 5 Conclusions and Perspectives

Introduction otating Shoxes Maski

Information Theoretic Evaluation of RSM Security Evaluation of RSM against CPA and 20-CPA Conclusions and Perspectives Rationale of the Countermeasure RSM Modelization

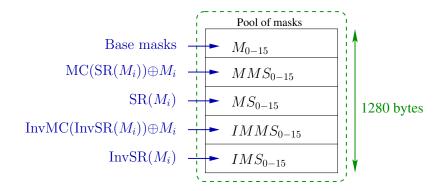
Masking with two (or more) paths



Rationale of the Countermeasure RSM Modelization

(ex. AES)

Masking with one path: $Z \rightarrow Z \oplus M$



- Homomorphic computation.
- This masking is the less costly in the litterature [NGDS12].
- Requires leak-free ROMs (well suited for ASIC & FPGA).

Rationale of the Countermeasure RSM Modelization

Table: Implementation results for reference and protected AES

	Unprotected	RSM	Overhead
Number of ALUTs (%)	2136 (8%)	2734 (10%)	28%
Number of M4K ROM Blocs (%)	20 (14%)	24 (17%)	20%
Frequency (MHz)	133	88	34%

Setting:

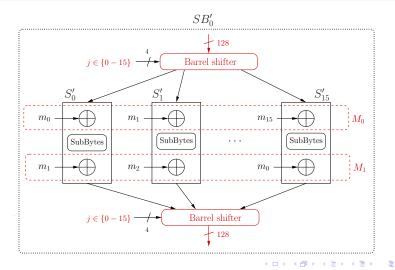
- *n* = 8 bit,
- 16 masks only, and

(Price metric) (Security metric)

provable security up to 2nd-order attacks

Information Theoretic Evaluation of RSM Security Evaluation of RSM against CPA and 20-CPA Conclusions and Perspectives Rationale of the Countermeasure RSM Modelization

RSM mode of operation



Sylvain Guilley, < sylvain.guilley@TELECOM-ParisTech.fr > Entropy / Security Trade-off

1 | 14

Rationale of the Countermeasure RSM Modelization

RSM leakage

• Masked sboxes $Z \mapsto M_{out} \oplus S(Z \oplus M_{in})$.

 $\mathcal{L}(Z,M) = \mathscr{L}(Z \oplus M)$.

In this expression, Z and M are *n*-bit vectors, *i.e.* live in \mathbb{F}_2^n . The leakage function $\mathscr{L}: \mathbb{F}_2^n \to \mathbb{R}$ depends on the hardware.

- $\bullet\,$ In a conservative perspective, $\mathscr L$ is assumed to be bijective.
- $\bullet\,$ In a realistic perspective, $\mathscr L$ is assumed to non-injective.

Rationale of the Countermeasure RSM Modelization

Metrics

- **O Cost**: Card $[\mathcal{M}] \in \{1, \cdots, 2^n\}$.
- Security:
 - Leakage: mutual information.
 - Attack: resistance against HO-CPA.

Modelization that bridges both notions:

$$\mathsf{P}[M = m] = \left\{ \begin{array}{ll} 1/\mathsf{Card}[\mathcal{M}] & \text{if } m \in \mathcal{M}, \text{ and} \\ 0 & \text{otherwise.} \end{array} \right.$$

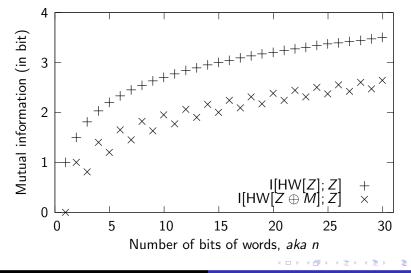
1 Introduction

- Side-Channel Analysis (SCA)
- Countermeasures
- Goal of the Presentation
- RSM: Rotating Sboxes Masking
 Rationale of the Countermeasure
 RSM Modelization
- Information Theoretic Evaluation of RSM
- 4 Security Evaluation of RSM against CPA and 2O-CPA
 Optimal HO-CPA
 Expression of ρ^(1,2)_{opt}
- 5 Conclusions and Perspectives

General Considerations

- ∀ℒ, I[ℒ(Z ⊕ M); Z] = 0 if H[M] = n bit (or equivalently, if M ~ U(𝔽ⁿ₂)). So with all the masks, the countermeasure is perfect.
- If \mathscr{L} is bijective (*e.g.* $\mathscr{L} = \mathsf{Id}$), then $\mathsf{I}[\mathscr{L}(Z \oplus M); Z] = n - \mathsf{H}[M], \text{ irrespective of } \mathcal{M}.$
- If *L* is non-injective (*e.g. L* = HW), then
 I[*L*(*Z* ⊕ *M*); *Z*] < *n* − H[*M*], but depends on *M*.
 Motivating examples: for *L* = HW on *n* = 8 bits,
 - $I[\mathscr{L}(Z \oplus M); Z] = 1.42701$ bit if $\mathcal{M} = \{0x00, 0x0f, 0xf0, 0xff\}$, but
 - I[ℒ(Z ⊕ M); Z] = 0.73733 bit if *M* = {0x00, 0x01, 0xfe, 0xff}.

Example for $\mathcal{M} = \{m, \neg m\}$



Optimal HO-CPA Expression of $\rho_{\rm opt}^{(1,2)}$

Introduction

- Side-Channel Analysis (SCA)
- Countermeasures
- Goal of the Presentation
- RSM: Rotating Sboxes Masking
 Rationale of the Countermeasure
 RSM Modelization
- Information Theoretic Evaluation of RSM
- Security Evaluation of RSM against CPA and 2O-CPA
 Optimal HO-CPA
 Expression of ρ^(1,2)_{opt}
 - 5 Conclusions and Perspectives

Optimal HO-CPA Expression of $\rho_{opt}^{(1,2)}$

Optimal CPA

In [PRB09], it is explained that best possible dO-CPA has $\rho_{\rm opt}^{(d)}$:

$$\frac{\operatorname{Var}\left(f_{\operatorname{opt}}^{(d)}(Z)\right)}{\operatorname{Var}\left(\left(\mathcal{L}(Z,M) - \operatorname{E}\mathcal{L}(Z,M)\right)^{d}\right)} = \frac{\operatorname{Var}\left(\operatorname{E}\left(\left(\operatorname{HW}[Z \oplus M] - \frac{n}{2}\right)^{d} \mid Z\right)\right)}{\operatorname{Var}\left(\left(\operatorname{HW}[Z \oplus M] - \frac{n}{2}\right)^{d}\right)}$$

where

$$\begin{split} f_{\mathsf{opt}}^{(d)}(z) &\doteq \mathsf{E}\left((\mathcal{L}(Z,M)-\mathsf{E}\mathcal{L}(Z,M))^d\mid Z=z\right) \\ &= \frac{1}{\mathsf{Card}[\mathcal{M}]}\sum_{m\in\mathcal{M}}\left(\frac{-1}{2}\sum_{i=1}^n (-1)^{(z\oplus m)_i}\right)^d, \end{split}$$

noting that

$$\mathsf{E} \; \mathsf{HW}[Z \oplus M] = \frac{1}{\mathsf{Card}[\mathcal{M}]} \sum_{m \in \mathcal{M}} \frac{1}{2^n} \sum_{z \in \mathbb{F}_2^n} \mathsf{HW}[z \oplus m] = \frac{n}{2}.$$

Optimal HO-CPA Expression of $\rho_{opt}^{(1,2)}$

(n = 4)

《曰》《聞》《臣》《臣》

Example for the intuition

	$Card[\mathcal{M}] = 2^4$	$Card[\mathcal{M}] = 2^3$	$Card[\mathcal{M}] = 2^2$	$Card[\mathcal{M}] = 2^1$
	0000	0000	0000	0000
	0001			
	0010			
	0011	0011	0011	
	0100	0100		
	0101			
	0110			
\mathcal{M}	0111	0111		
M	1000	1000		
	1001			
	1010			
	1011	1011		
	1100	1100	1100	
	1101			
	1110			
	1111	1111	1111	1111

 $\begin{array}{l} \textbf{Optimal HO-CPA} \\ \textbf{Expression of } \rho_{\text{opt}}^{(1,2)} \end{array}$

Example evaluation

$Card[\mathcal{M}]$	H[<i>M</i>]	$\rho_{\rm opt}^{(1)}$	$ ho_{ m opt}^{(2)}$	$I[HW[Z \oplus M]; Z]$	$I[Z \oplus M; Z]$
2 ⁴	4	0	0	0	0
2 ³	3	0	0.166667	0.15564	1
2 ²	2	0	0.333333	1.15564	2
2 ¹	1	0	1	1.40564	3
20	0	1	1	2.03064	4

- It seems that the most entropy, the least leakage in $\mathscr{L} = HW$ and in $\mathscr{L} = Id$.
- But this will be challenged by exhaustive searches...

Dptimal HO-CPA Expression of $\rho_{\rm opt}^{(1,2)}$

.

Resistance against 10-CPA and 20-CPA

$$\rho_{\text{opt}}^{(1)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{\text{Card}[\mathcal{M}]} \sum_{m \in \mathcal{M}} (-1)^{m_i} \right)^2,$$
$$\rho_{\text{opt}}^{(2)} = \frac{1}{n(n-1)} \left(\frac{1}{\text{Card}[\mathcal{M}]^2} \sum_{(m,m') \in \mathcal{M}^2} \left(\sum_{i=1}^{n} (-1)^{(m \oplus m')_i} \right)^2 - n \right)$$

Dptimal HO-CPA Expression of $ho_{
m opt}^{(1,2)}$

Expression in Boolean theory — With Indicator f of \mathcal{M}

- Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$, defined as: $\forall m \in \mathbb{F}_2^n, f(m) = 1 \iff m \in \mathcal{M}.$
- The Fourier transform $\hat{f} : \mathbb{F}_2^n \to \mathbb{Z}$ of the Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is defined as $\forall a \in \mathbb{F}_2^n, \hat{f}(a) \doteq \sum_{m \in \mathbb{F}_2^n} f(m)(-1)^{a \cdot m}.$
- It allows for instance to write $Card[\mathcal{M}] = \sum_{m \in \mathcal{M}} 1 = \sum_{m \in \mathbb{F}_2^n} f(m) = \hat{f}(0).$ Recall $Card[\mathcal{M}] \in \llbracket 1, 2^n \rrbracket$, hence $\hat{f}(0) > 0.$

Dptimal HO-CPA Expression of $ho_{
m opt}^{(1,2)}$

Expression of $\rho_{opt}^{(1,2)}$ in Boolean theory

$$\rho_{\text{opt}}^{(1)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\hat{f}(e_i)}{\hat{f}(0)} \right)^2 , \qquad (1)$$

$$\rho_{\text{opt}}^{(2)} = \frac{1}{n(n-1)} \sum_{\substack{(i,i') \in [[1,n]]^2 \\ i \neq i'}} \left(\frac{\hat{f}(e_i \oplus e_{i'})}{\hat{f}(0)} \right)^2 . \qquad (2)$$

The e_i are the canonical basis vectors $(0, \dots, 0, 1, 0, \dots, 0)$. Thus, RSM resists:

• first-order attacks iff $\forall a$, $HW[a] = 1 \Longrightarrow \hat{f}(a) = 0$;

I irst- and second-order attacks iff ∀a, $1 ≤ HW[a] ≤ 2 ⇒ \hat{f}(a) = 0.$

Dptimal HO-CPA Expression of $ho_{
m opt}^{(1,2)}$

Example: n = 4

All the functions $f : \mathbb{F}_2^4 \to \mathbb{F}_2$ that cancel $\rho_{\text{opt}}^{(1,2)}$.

f	HW[f]	H[<i>M</i>]	$ ho_{opt}^{(1,2)}$	$I[HW[Z \oplus M]; Z]$	$I[Z \oplus M; Z]$	$d^{\circ}_{alg}(f)$
0x3cc3	8	3	0,0	0.219361	1	1
0x5aa5	8	3	0,0	0.219361	1	1
0x6699	8	3	0,0	0.219361	1	1
0x6969	8	3	0,0	0.219361	1	1
0x6996	8	3	0,0	1	1	1
0x9669	8	3	0,0	1	1	1
0x9696	8	3	0,0	0.219361	1	1
0x9966	8	3	0,0	0.219361	1	1
0xa55a	8	3	0,0	0.219361	1	1
0xc33c	8	3	0,0	0.219361	1	1
Oxffff	16	4	0,0	0	0	0

A B > A B >

Dptimal HO-CPA Expression of $ho_{ ext{opt}}^{(1,2)}$

Functions f are classified by equivalence relationships

- Let us call σ a permutation of $[\![1, n]\!]$. Thus $\rho_{\text{opt}}^{(1,2)}(f \circ \sigma) = \rho_{\text{opt}}^{(1,2)}(f)$.
- The complementation $\rho_{\text{opt}}^{(1,2)}(\neg f) = \rho_{\text{opt}}^{(1,2)}(f).$

Solutions are derived from: $f(x_1, x_2, x_3, x_4) = x_1 \oplus x_2 \oplus x_3, \bigoplus_i x_i, 1$. Note: \mathcal{M} does not decompose as $\tilde{\mathcal{M}} \cup \neg \tilde{\mathcal{M}}$,

Optimal HO-CPA Expression of $ho_{
m opt}^{(1,2)}$

Case n = 5

Nb. classes	HW[f]	H[<i>M</i>]	$\rho_{\text{opt}}^{(1)}$	$\rho_{opt}^{(2)}$	$I[HW[Z \oplus M]; Z]$	$I[Z \oplus M; Z]$	$d_{alg}^{\circ}(f)$
3	8	3	0	0	0.32319	2	2
4	12	3.58496	0	0	0.18595	1.41504	3
2	16	4	0	0	0.08973	1	1
2	16	4	0	0	0.08973	1	2
4	16	4	0	0	0.12864	1	2
2	16	4	0	0	0.16755	1	1
4	16	4	0	0	0.26855	1	2
6	16	4	0	0	0.32495	1	2
1	16	4	0	0	1	1	1
4	20	4.32193	0	0	0.07349	0.67807	3
3	24	4.58496	0	0	0.04300	0.41504	2
1	32	5	0	0	0	0	0

Here, we start to see the compromize, with good choices in **bold**.

Dptimal HO-CPA Expression of $ho_{
m opt}^{(1,2)}$

SAT solvers

- f is a 2^n Boolean variable set, noted $\{f_x = f(x), x \in \mathbb{F}_2^n\}$.
- For every value Price (defined as $Card[\mathcal{M}]$), we have:

$$\forall a, 1 \leq \mathsf{HW}[a] \leq 2, \quad \sum_{x} f(x)(-1)^{a \cdot x} = 0 \quad \Longleftrightarrow \\ \forall a, 1 \leq \mathsf{HW}[a] \leq 2, \sum_{x} f_{x} \land (a \cdot x) = \frac{\sum_{x} f_{x}}{2} = \frac{\mathsf{Card}[\mathcal{M}]}{2}$$

• More precisely, any condition " $\leq k(f_1, \dots, f_n)$ ", for $0 \leq k \leq n$, can be expressed in terms of CNF clauses [Sin05]. We note that:

$$\mathsf{HW}[f] \leqslant k \quad \Leftrightarrow \quad n - \mathsf{HW}[\neg f] \leqslant k \quad \Leftrightarrow \quad \mathsf{HW}[\neg f] \geqslant n - k \,.$$

 Example: 256 literals, but 1,105,664 auxiliary variables and 2,219,646 clauses, irrespective of Card[M] ∈ N*.

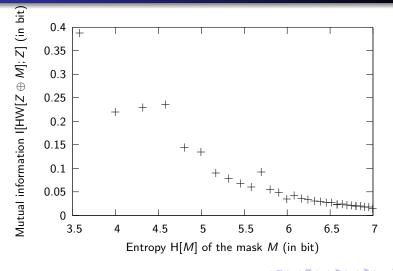
Dptimal HO-CPA Expression of $ho_{
m opt}^{(1,2)}$

Summary for n = 8

- $Card[\mathcal{M}] = 12$. One MIA found, 0.387582 bit
- $\bullet~\mathsf{Card}[\mathcal{M}]=16.$ Many MIA, in [0.181675, 1.074950] bit.
- There are solutions only for Card[\mathcal{M}] $\in \{4 \times \kappa, \kappa \in [3, 61]] \cup \{64\}\}.$

Optimal HO-CPA Expression of $ho_{
m opt}^{(1,2)}$

Example of solutions



Introduction

- Side-Channel Analysis (SCA)
- Countermeasures
- Goal of the Presentation
- RSM: Rotating Sboxes Masking
 Rationale of the Countermeasure
 RSM Modelization
- Information Theoretic Evaluation of RSM
- 4 Security Evaluation of RSM against CPA and 2O-CPA
 Optimal HO-CPA
 Expression of ρ^(1,2)_{opt}
- 5 Conclusions and Perspectives

Conclusions

- It is possible to achieve high-order security even with depleted entropy
- Case treated in the presentation: Resist 10-CPA and 20-CPA, with fewer masks as possible.
- We discovered that $Card[\mathcal{M}]$ was not the only variable \Rightarrow solutions actually depend on \mathcal{M} .
- An encoding in terms of indicator function f of \mathcal{M} shows that we are looking for 2nd order correlation-immune Boolean functions of lowest weight.
- Secure even if \mathcal{M} is public.

- Find other functions for n > 8.
- Algebraic constructions:
 - Maiorana-McFarland, or
 - codes of dual-distance *d*...
- Dynamic reconfiguration to update \mathcal{M} on a regular basis?

References

Jean-Luc Danger, Sylvain Guilley, Shivam Bhasin, and Maxime Nassar. [DGBN09] Overview of Dual Rail with Precharge Logic Styles to Thwart Implementation-Level Attacks on Hardware Cryptoprocessors, - New Attacks and Improved Counter-Measures -... In SCS, IEEE, pages 1-8, November 6-8 2009. Jerba, Tunisia. DOI: 10.1109/ICSCS.2009.5412599. [NGDS12] Maxime Nassar, Sylvain Guilley, Jean-Luc Danger, and Youssef Souissi. RSM: a Small and Fast Countermeasure for AES. Secure against First- and Second-order Zero-Offset SCAs In DATE, March 12-16 2012. Dresden, Germany, (TRACK A: "Application Design", TOPIC A5: "Secure Systems"). [PRB09] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan, Statistical Analysis of Second Order Differential Power Analysis. IEEE Trans. Computers, 58(6):799-811, 2009. [Sin05] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In Peter van Beek, editor, CP, volume 3709 of Lecture Notes in Computer Science, pages 827–831. Springer, 2005. [SRQ06] Francois-Xavier Standaert, Gaël Rouvrov, and Jean-Jacques Quisquater. FPGA Implementations of the DES and Triple-DES Masked Against Power Analysis Attacks. In FPL. IEEE, August 2006. Madrid, Spain.

Sylvain Guilley, < sylvain.guilley@TELECOM-ParisTech.fr > Entropy / Security Trade-off | INDOCRYPT'2011 | 36

★ Ξ →

Formal Analysis of the Entropy / Security Trade-off in First-Order Masking Countermeasures against Side-Channel Attacks

Maxime Nassar, Sylvain Guilley and Jean-Luc Danger

Bull TrustWay, Rue Jean Jaurès, B.P. 68, 78 340 Les Clayes-sous-Bois, France.

Institut TELECOM / TELECOM ParisTech, 46 rue Barrault, 75 634 Paris Cedex, France.

Secure-IC S.A.S., 80 avenue des Buttes de Coësmes, 35700 Rennes, France.